Systematic Interactome Mapping and Genetic Perturbation Analysis of a C. elegans TGF-β Signaling Network

Muneesh Tewari,1,2,3,4,12 Patrick J. Hu,4,5,6,12 Jin Sook Ahn,1,2,4 Nono Ayivi-Guedehoussou,1,2,4 Pierre-Olivier Vidalain,1,2,4 Siming Li,1,2,4 Stuart Milstein,1,2,4 Chris M. Armstrong,1,2,4 Mike Boxem,1,2,4 Maurice D. Butler,4,5 Svetlana Busiguita,1,2 Jean-François Rual,1,2,4,8 Nieves Ibarrola,1,2 Sabrina T. Chaklors,1,2,13 Nicolas Bertin,1,2,4 Philippe Vaglio,4,14 Mark L. Edgley,1,2,15 Kevin V. King,11 Patrice S. Albert,10 Jean Vandenhaute,2,4,8 Akhilesh Pandey,9 Donald L. Riddle,10 Gary Ruvkun,4,5 and Marc Vidal1,2,4,*

1Center for Cancer Systems Biology
2Department of Cancer Biology
3Department of Medical Oncology
4Department of Genetics
5Department of Hematology/Oncology
6Division of Biological Sciences and Molecular Biology Program
7Laboratory of Neuroendocrinology
8Unite´ de Recherche en Biologie Mole´ culaire
9McKusick-Nathans Institute of Genetic Medicine
10Division of Hematology/Oncology
11Department of Molecular Biology
12Department of Medical Oncology
13Laboratory of Neuroendocrinology
14Present address: Modul-Bio, 13009 Marseille, France.
15Present address: Biotechnology Laboratory, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-β pathway mutant animals, identified nine DAF-7/TGF-β signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-β signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-β signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.

Introduction

With the public release of (nearly) complete genome sequences, the availability of draft versions of the corresponding predicted proteomes, and the advent of functional genomic and proteomic approaches for large-scale identification and characterization of gene products, we are beginning to understand biological processes at the level of systems (Ideker et al., 2001; Kitano, 2002; Vidal, 2001). One step toward meeting this challenge has been the development of large-scale protein interaction (or "interactome") mapping strategies (Walhout and Vidal, 2001b). In multicellular organisms, interactome maps have been used to identify components of various biological systems and draw networks of possible connections among them (Walhout et al., 2000a). Thus far, however, the use of interactome maps has been somewhat limited for systems biology approaches, because such maps lack information pertaining to the logic of molecular networks, which resides more in the functional relationships between components than in their physical interactions alone (Ge et al., 2003).

Experimental evidence for functional involvement of potential network components identified by high throughput yeast two-hybrid (HT-Y2H) screens can be obtained by RNAi knockdowns of the corresponding genes (Boulton et al., 2002; Walhout et al., 2002). However, to reveal functional interactions between network components, the consequences of simultaneous perturbations of two or more components must be examined. This kind of analysis is routine in classical genetics to identify functional relationships, such as epistatic and synthetic enhancement interactions between genes (Avery and Wasserman, 1992; Guarente, 1993). This is typically performed a few genes at a time. However, the combination of interactome mapping and systematic large-scale double perturbation genetic analysis has not been described to date. Here, we report such an analysis performed in the context of the C. elegans DAF-7/TGF-β signaling network.

Signaling through ligands of the TGF-β superfamily serves important functions in diverse species, including roles in cancer pathogenesis, inflammation, and development (Massague, 1998). Inherited mutations in genes encoding components of TGF-β signaling pathways...
cause a variety of diseases, including familial primary pulmonary hypertension, hereditary chondrodysplasia, and tumor predisposition syndromes (Massague et al., 2000). In C. elegans, the daf-7/TGF-β pathway regulates a decision between reproductive development and arrest at a larval stage known as dauer that is suited for survival under conditions of environmental stress (Riddle, 1988). Dauer larvae can be discriminated from other larval stages and adults based on radial constriction, the presence of alae, the absence of pharyngeal pumping, darkened intestinal appearance, and other morphological features. Components of the daf-7/TGF-β pathway have been identified and characterized genetically (Thomas et al., 1993) and are conserved with the canonical TGF-β signaling pathway in vertebrates (Estevez et al., 1993; Georgi et al., 1990; Inoue and Thomas, 2000; Patterson et al., 1997; Ren et al., 1996; Schackwitz et al., 1998) (Figure 1A). Loss-of-function mutations in upstream components (Figure 1A; see pink rectangles) produce an enhanced dauer arrest phenotype, whereas similar mutations in downstream components (Figure 1A; see green rectangles) produce an inability to undergo dauer arrest.

Large-scale Y2H screens using known DAF-7/TGF-β pathway components as initial baits produced an interactome network that we interrogated in vivo using single and double genetic perturbations performed with RNAi and genetic loss-of-function mutants. Here, we identify several modulators of DAF-7/TGF-β signaling and infer some of their functional relationships from patterns of genetic interaction.

Results and Discussion

Y2H Interactome Mapping of a DAF-7/TGF-β Network

We performed Y2H screens using a mixed-stage C. elegans cDNA library fused to the activation domain-encoding sequence of Gal4 (AD-wrmcDNA) (Walhout and Vidal, 2001a). We used as baits six of the known DAF-7/TGF-β pathway proteins fused to the Gal4 DNA binding domain (DB-X) (i.e. DAF-7, a TGF-β superfamily ligand [Ren et al., 1996]; DAF-1 [Georgi et al., 1990] and DAF-4 [Estevez et al., 1993], two heteromeric TGF-β receptor homologs; DAF-14, a SMAD2 homolog [Inoue and Thomas, 2000]; DAF-3, a SMAD4 homolog [Patterson et al., 1997]; and DAF-12, a nuclear hormone receptor [NHR] [Antebi et al., 2000]) (Figure 1A). An ORF corresponding to DAF-8, an R-SMAD homolog (Estevez, 1997), was cloned as a bait but could not be used in Y2H screens because the DB-DAF-8 fusion behaved as a strong autoactivator. One additional gene known to act in this pathway, daf-5 (Figure 1A), was not used as a bait because it had not been molecularly cloned prior to the present work (see later results).

To minimize false positive interactions, we utilized a version of the two-hybrid system that expresses bait and prey proteins from low-copy vectors and a mild ADH1 promoter (Vidal, 1997). We also retested all interactions by reconstituting them in fresh yeast cells containing the bait plasmid and retransformed with the prey plasmid by gap repair (Walhout and Vidal, 2001a). From screens using the initial six baits, we recovered 28 potentially interacting proteins (Figure 1B; see blue circles).

We expanded this interactome map with “second-generation” proteome-wide Y2H screens using 19 of the 28 Y2H interactors identified from the first-generation screens as baits (see Experimental Procedures for details). A total of 27 additional interactors were identified (Figure 1B; see yellow circles). Altogether, we identified 71 Y2H interactions among 59 proteins, comprising a complex interactome network (Figure 1B; Supplemental Table S1 at http://www.molecule.org/cgi/content/full/13/4/469/DC1).

Overall Validation of the DAF-7/TGF-β Y2H Interactome Network by Co-AP Assays in 293T Cells

To evaluate the accuracy of our HT-Y2H interactome data set, we considered experimental and biological false positives separately. Experimental false positives arise from inherent limitations specific to the Y2H method, while biological false positives correspond to X-Y protein pairs that can interact in various exogenous and artificial assays but do not do so in vivo in their natural “environment.”

To directly test the rate of experimental false positives in our Y2H screens, we retested interactions using an independent assay based on co-AP of bait and prey proteins expressed in transfected mammalian cells (Xu et al., 2003). ORFs cloned here or available in the ORFeome 1.1 collection (Reboul et al., 2003) were Gateway transferred into the relevant mammalian cell expression vectors (Walhout et al., 2000b). Bait proteins were expressed as glutathione S-transferase (GST) fusions (Smith and Johnson, 1988) and prey proteins as Myc epitope-tagged fusions in the human 293T cell line. GST fusion proteins were precipitated from cell lysates by glutathione-Sepharose affinity chromatography, and associated prey proteins were detected by immunoblotting precipitates with anti-Myc antibody.

Among 19 Y2H pairs for which both GST-bait and Myc-prey fusion proteins were adequately expressed (see Experimental Procedures for details), 17 interactions (89%) were recapitulated (Figure 2). This experiment strongly indicates that we have generated a high-quality DAF-7/TGF-β interactome network with a very low frequency of experimental false positive interactions.

It is important to note that until we have a precise and dynamic view of the whole proteome of an organism of interest, it will be virtually impossible to establish that any two proteins found by Y2H do not interact in vivo. Thus, biological false positives are much more difficult to define and detect. However, increasing evidence for biologically genuine Y2H interactions can be obtained by accumulating experimental evidence emerging from other functional genomic or proteomic approaches (Ge et al., 2003; Vidal, 2001).

Limitations of the Y2H-Generated Interactome Network

Although our Y2H screens identified 71 protein interactions, it is likely that there are additional interactome components that were not identified by this approach. Y2H screening has been estimated to have a false negative rate of approximately 60%–70% (Walhout et al., 2000).
A C. elegans DAF-7/TGF-β Signaling Network

(A) Model of daf-7/TGF-β signaling as defined by genetic analysis. The activity of the pathway determines the decision between dauer arrest and development to a reproductive adult. Genes inferred to function to repress dauer formation in the wild-type state are indicated in pink, whereas those that act to induce dauer arrest in the wild-type state are indicated in green. As indicated by the black “stopped” arrow, the genes in green are epistatic to the genes in pink. C. elegans gene names are indicated in italics, with mammalian homologs of their encoded products indicated in blue. Molecular cloning of daf-5 has not been previously published (see later results presented here). At the biochemical level, the pathway is believed to be initiated by binding of the TGF-β-like ligand DAF-7 to a heteromeric cell surface receptor (composed of DAF-1/TGF-β-receptor type I and DAF-4/TGF-β-receptor type II). According to the current model, DAF-8 (an R-SMAD) and DAF-14 (a SMAD2 homolog) become activated, leading to action on downstream components, which include the SMAD4 homolog DAF-3 and the nuclear hormone receptor DAF-12.

(B) A C. elegans DAF-7/TGF-β interactome network. Links represent Y2H interactions. Pink or green rectangles represent known daf-7/TGF-β signaling components. Screens done using DAF-7 and DAF-12 as baits did not yield any interactors. DAF-8/R-SMAD autoactivated Y2H reporter genes and could therefore not be used as a bait. DAF-5 was not used as an initial bait in Y2H screens because molecular cloning of daf-5 had not been published until the present work (see later results). Blue circles represent first-generation interactors. Yellow circles represent second-generation interactors. WormPep-predicted ORF names are indicated for each of the interactors. Circular links represent homotypic protein interactions. Interactors already implicated in daf-7/TGF-β or dauer signaling on the basis of published studies are highlighted by providing alternative names in larger bold letters.

Figure 1. A C. elegans DAF-7/TGF-β Signaling Network

(A) Model of daf-7/TGF-β signaling as defined by genetic analysis. The activity of the pathway determines the decision between dauer arrest and development to a reproductive adult. Genes inferred to function to repress dauer formation in the wild-type state are indicated in pink, whereas those that act to induce dauer arrest in the wild-type state are indicated in green. As indicated by the black “stopped” arrow, the genes in green are epistatic to the genes in pink. C. elegans gene names are indicated in italics, with mammalian homologs of their encoded products indicated in blue. Molecular cloning of daf-5 has not been previously published (see later results presented here). At the biochemical level, the pathway is believed to be initiated by binding of the TGF-β-like ligand DAF-7 to a heteromeric cell surface receptor (composed of DAF-1/TGF-β-receptor type I and DAF-4/TGF-β-receptor type II). According to the current model, DAF-8 (an R-SMAD) and DAF-14 (a SMAD2 homolog) become activated, leading to action on downstream components, which include the SMAD4 homolog DAF-3 and the nuclear hormone receptor DAF-12.

(B) A C. elegans DAF-7/TGF-β interactome network. Links represent Y2H interactions. Pink or green rectangles represent known daf-7/TGF-β signaling components. Screens done using DAF-7 and DAF-12 as baits did not yield any interactors. DAF-8/R-SMAD autoactivated Y2H reporter genes and could therefore not be used as a bait. DAF-5 was not used as an initial bait in Y2H screens because molecular cloning of daf-5 had not been published until the present work (see later results). Blue circles represent first-generation interactors. Yellow circles represent second-generation interactors. WormPep-predicted ORF names are indicated for each of the interactors. Circular links represent homotypic protein interactions. Interactors already implicated in daf-7/TGF-β or dauer signaling on the basis of published studies are highlighted by providing alternative names in larger bold letters.

2000a). Interactions requiring specific phosphorylation states of the baits, for instance, might not be detected in this assay. Protein interactions among DAF-7/TGF-β components in C. elegans have not been studied in the past. However, if one infers expected protein interactions on the basis of known interactions in other species, it is apparent that most of the predicted interactions (many of which are phosphorylation dependent) were not found in our screens. The false negative rate might be particularly prominent in our experiments because of the rigorous constraints used to minimize the false positive rate. Although our interactome network is not comprehensive, the co-AP experiments along with results of functional assays (see below) suggest that this approach has nonetheless identified many components of TGF-β signaling.

Proteins in the Interactome Network with Likely Links to DAF-7/TGF-β Signaling and/or Dauer Formation

Searches of the scientific literature provided immediate links to TGF-β signaling and/or dauer formation for some of the proteins in the interactome map. One component
Figure 2. Recapitulation of Y2H Interactions in Mammalian Cells

Upper panels show the results of anti-Myc immunoblotting of glutathione-Sepharose precipitates from cells transfected with GST- bait and Myc-prey fusion protein expression vectors. The lanes alternate between extracts from cells expressing GST-bait proteins (+) or GST alone (-). Aliquots of cell lysates were also directly immunoblotted to detect expression of Myc- and GST-tagged proteins (middle and lower panels, respectively). Expression of GST protein was consistently observed at much higher levels than GST-bait proteins. Despite this, specific co-AP of Myc-prey protein is detected in GST-bait-transfected samples as compared to GST-transfected samples in 17 out of 19 cases. ORF names (and gene names in parentheses) corresponding to baits and preys are shown below the immunoblots. Approximate molecular weights of the protein predicted from each ORF do not include the contribution of GST- or of the Myc-epitope tag.

of the network, C47E8.5, is an Hsp90 protein that interacts with both DAF-1/TGF-RI and DAF-4/TGF-RII. C47E8.5 also corresponds to daf-21 (Figure 1B), a gene previously implicated in dauer arrest phenotype (Birnby et al., 2000). Genetic epistasis analysis places this gain-of-function allele in the daf-11/guanyl cyclase pathway (Thomas et al., 1993). daf-11 encodes a guanyl cyclase that is expressed in a subset of amphid neurons, the processes of which are exposed to the environment (Birnby et al., 2000). Although genetic analysis suggests that DAF-11/guanyl cyclase and the DAF-21/Hsp90 gain-of-function mutant protein signal in parallel to the daf-7/TGF-RI pathway (Thomas et al., 1993), the interaction with both DAF-1/TGF-RI and DAF-7/TGF-RII (Figure 1B) suggests that wild-type DAF-21/Hsp90 may function in parallel to the daf-7/TGF-RI pathway.

The TTX-1 homeoprotein (Y113G7A.6A) is linked to both DAF-3/SMAD4 and DAF-4/TGF-RII through one interactor (Figure 1B). TTX-1 is encoded by a gene that is required for sustained dauer arrest in daf-7/TGF-RII loss-of-function mutant animals (Satterlee et al., 2001). One explanation for this observation has been that ttx-1 may affect dauer maintenance because of its role in specification of neurons that transduce the thermal inputs that are important in dauer regulation. Our results suggest an alternative model in which the TTX-1 protein may function more directly by interacting with DAF-7/TGF-RI pathway signaling proteins to regulate maintenance of the dauer state. The protein interaction data would predict that TTX-1 acts in the same cells as DAF-3/SMAD4 and DAF-4/TGF-RII.

Another protein in the network, Y66H1B.2, is a homolog of human filamin and interacts with DAF-14/SMAD2 previously implicated in dauer formation by virtue of a gain-of-function mutation that confers an enhanced dauer arrest phenotype (Birnby et al., 2000). This recapitulates the reported interaction between human filamin and SMAD2 in cultured mammalian cells (Sasaki et al., 2001). Filamin is known to function as a modulator of TGF-RII signaling, since expression of filamin in filamin-deficient mammalian cells has been shown to restore TGF-RII signaling (Sasaki et al., 2001).

Data from the interaction map also suggests hypotheses relevant to understanding the function of known TGF-RI pathway components. For example, DAF-3/SMAD4 is known to act as a transcriptional repressor in cells of the C. elegans pharynx (Thatcher et al., 1999). In our Y2H screens, DAF-3/SMAD4 interacted with Y113G7B.23, which in turn interacted with R07E5.3. These two genes encode homologs of SWI3 and SNF5, respectively, which are chromatin-remodeling factors that can participate in transcriptional repression (Kloanchendorf-Yeivin et al., 2002). Hence, it is possible that transcriptional repression by DAF-3/SMAD4 is at least in part mediated by these chromatin-associated factors. An important aim of our study was to identify molecules relevant to human TGF-RII signaling pathways. At least 29 of the 55 identified proteins in the interactome network (54%) appear to show strong sequence conservation in humans by BLASTP analysis, suggesting that many of these interactions may be relevant to mammalian TGF-RII signaling (Supplemental Table S2, available on Molecular Cell’s website).
Functional Analysis of Interactome Components by Systematic Genetic Perturbations

Given that the majority of the proteome has not been studied, a general limitation of protein interaction maps is that most interactors represent uncharacterized proteins. Without functional data on these proteins, the biological relevance of these interactions is often difficult to ascertain. Indeed, the majority of proteins in our interactome network do not have known biological functions.

RNAi can be performed in wild-type animals (i.e., single genetic perturbations) to assign functional roles to individual proteins in an interactome network (Boulton et al., 2002). We carried out single perturbation analysis of proteins from the interactome network using RNAi and assayed for an enhanced dauer arrest phenotype. Three genes derived from the protein interaction network produced an enhanced dauer arrest phenotype upon RNAi in wild-type animals (C25A1.5, T27E9.1, and B0336.2/arf-1; Figure 3A, wild-type rows and Figure 3B, blue rows), indicating that these gene products normally function to repress dauer formation during larval development.

Single perturbation analysis, although capable of directing attention to particular components in an interactome network, does not reveal functional relationships with directions or signs between components (e.g. X acts upstream of Y or X represses Y). An understanding of such functional relationships is essential for deciphering the logic of molecular networks. Simultaneous perturbation of multiple components is a strategy that may reveal such relationships. To identify functional relationships in the DAF-7/TGF-β interactome network, we carried out systematic double genetic perturbations by performing RNAi of identified interactome components in various loss-of-function mutant backgrounds corresponding to known DAF-7/TGF-β pathway components. These double perturbations identified 13 genetic interactions among genes encoding components of the DAF-7/TGF-β interactome. First, all three genes found to have an enhanced dauer arrest RNAi phenotype in wild-type animals (T27E9.1, B0336.2/arf-1, and C25A1.5) demonstrated a genetic interaction with the known DAF-7/TGF-β pathway gene daf-12/NHR (Figures 3A and 3C). The nature of this interaction was epistatic, given that the daf-12(m20) loss-of-function allele suppressed the enhanced dauer arrest RNAi phenotype of each of the three genes (Figures 3A and 3C). This suggests that these three genes products normally function upstream of DAF-12/NHR to repress dauer formation.

A number of additional epistatic interactions were identified involving W01G7.1, a gene encoding an interactome component that physically interacts with DAF-3/SMAD4 (Figures 1B and 2, experiment 19). RNAi of W01G7.1 suppressed the enhanced dauer arrest phenotype of loss-of-function mutants in daf-1/TGF-β/RI, daf-7/TGF-β, daf-8/R-SMAD, and daf-14/SMAD2 (Figures 3A and 3B). This suggests that the W01G7.1 gene product may function downstream of and be repressed by DAF-1/TGF-β/RI, DAF-7/TGF-β, DAF-8/R-SMAD, and DAF-14/SMAD2.

In addition to epistatic interactions, synthetic enhancement was also observed. RNAI of W03G1.5 and AC3.3 enhanced the partial dauer arrest phenotype of daf-8(e1393) animals, RNAI of C37C3.6a and F59A2.3 enhanced the partial dauer arrest phenotype of daf-14(m77) animals, and RNAI of R05F9.10 enhanced dauer formation in both daf-8 and daf-14 genetic backgrounds (Figures 3A and 3B). These findings are consistent with a role of each of these five interactome components in repressing dauer formation during normal development.

Altogether, the thirteen genetic interactions identified connect five of the known daf-7/TGF-β pathway genes (daf-1/TGF-β/RI, daf-7/TGF-β, daf-8/R-SMAD, daf-14/SMAD2, and daf-12/NHR) to nine genes encoding components of the protein interaction map.

Limitations of the Genetic Perturbation Analysis

Although the genetic perturbation analysis was successful in identifying genes modulating dauer formation and their genetic interactions with known daf-7/TGF-β pathway genes, it is likely that there are a significant number of additional genes and interactions within the interactome network that were not identified in our experiments. Our analysis is limited by the particular alleles of known daf-7/TGF-β pathway mutants used as well as the shortcomings of RNAi as a mode of gene inactivation. The penetrance of RNAI effects can be quite variable and is frequently significantly weaker than that of a corresponding genetic mutant (Fraser et al., 2000). In addition, C. elegans RNAI is notoriously ineffective in neurons (Tavernarakis et al., 2000). Given that neuronal signaling regulates dauer formation in C. elegans (Bargmann and Horvitz, 1991; Bimby et al., 2000; Li et al., 2003; Ren et al., 1996; Schackwitz et al., 1996; Wolkow et al., 2000), it is possible that many components of the interactome map might not score positively in our RNAI-based analysis.

In a series of control experiments, we used RNAi to inactivate 12 genes known to have an enhanced dauer arrest loss-of-function phenotype based on published phenotypes of genetic mutants. RNAI reproduced the expected phenotype in only three cases, and in each case the phenotype observed was weaker than that reported for the corresponding genetic mutant (data not shown). Therefore, we believe that the 9 genes and 13 genetic interactions identified in our experiments (Figure 3) represent a conservative estimate of the number of Y2H interactors that have daf-7/TGF-β pathway regulatory functions. Given that a genome-scale gene knockout project is underway in C. elegans, the availability of genetic mutants corresponding to all of the interactome components may allow a deeper functional analysis of daf-7/TGF-β signaling in the future.

An Integrated Protein and Genetic Interaction Map of the DAF-7/TGF-β Signaling Network

We combined the results of interactome mapping and systematic genetic perturbation analysis to construct an integrated map of the DAF-7/TGF-β signaling network (Figure 4). This map captures potential physical links based on Y2H interactions (Figure 4; gray links) or based on both Y2H and co-AP data (Figure 4; thicker black links), as well as functional relationships (Figure 4; links in red) derived from the results of genetic double pertur-
Figure 3. Single and Double Genetic Perturbation Experiments

(A) RNAi matrix. Loss-of-function genetic backgrounds are shown in rows, and genes subjected to RNAi are represented in columns. Unshaded boxes represent combinations that did not yield a statistically significant (i.e., \(p < 0.001 \) using Student’s t test) effect on the frequency of dauer arrest when compared to “no RNAi” control experiments done in parallel. Shaded boxes denote statistically significant effects on dauer arrest frequency, with each color representing a phenotype or genetic interaction as indicated. Genes for which additional phenotypes (e.g., embryonic lethality, sterility, or nondauer larval arrest) were observed at varying degrees of penetrance are underlined. In each of these cases, our observations were consistent with similar developmental phenotypes previously reported in large-scale RNAi screens (Fraser et al., 2000; Gonczy et al., 2000; Kamath et al., 2003; Maeda et al., 2001; Piano et al., 2000).

(B and C) Numerical data from genetic perturbation experiments yielding statistically significant results (shaded boxes in [A]). Every experiment was carried out with multiple trials on multiple days. “No RNAi” indicates that animals were fed with bacteria containing the RNAi feeding vector pL4440 without an insert. In each trial, dauers and nondauers were counted. The average % dauer arrest ± standard error of the mean (SEM) is listed, along with the total number of wells assayed (n) for each RNAi clone (see Experimental Procedures for details). In (B), the p value reflects the statistical significance of the difference in % dauer arrest in the no RNAi group compared to the gene-specific RNAi group. For the three experiments in (C), the p value reflects the statistical significance of the difference in dauer formation observed with gene-specific RNAi in the wild-type background compared to that observed with gene-specific RNAi in the daf-12 loss-of-function background. Control and gene-specific RNAi phenotypes were calculated from animals assayed on the same 24 well plates to minimize artifacts of interplate variability (see Experimental Procedures for details).

Such integration of physical and genetic interactions for DAF-7/TGF-\(\beta \)-signaling points to a higher level of complexity than is encompassed by current models. First, most physical interactions are part of a single state (as inferred from genetic perturbation data (Figure 3)). Seven of the nine modulators appear to be conserved in humans (Table 1); some of these may represent TGF-\(\beta \)-signaling modulators in mammals. We cannot rule out the possibility that AC3.3/ABU-1 and W03G1.5 may have homologs that modulate TGF-\(\beta \)-signaling in humans but are not identifiable by BLASTP-based homology searches.
A TGF-β Signaling Network in C. elegans

Figure 4. Integrated Map of a DAF-7/TGF-β Network

Y2H interactions and interactions observed in 293T cell copurification assays are shown together with genetic interactions detected from the double perturbation matrix. Known daf-7/TGF-β pathway genes and their products are in rectangular boxes and are labeled using an unitalicized lower case version of the standard C. elegans three-letter system to reflect the fact that the diagram combines both physical interactions between proteins and genetic interactions between genes. Physical interactions defined by Y2H data are represented as links in light gray. Those that have been tested and confirmed by co-AP assays are shown as thicker black lines. Genes and proteins that exhibited both Y2H and genetic interactions are indicated as large colored circles. Genes inferred to function to repress dauer formation in the wild-type state are indicated in pink, whereas those that act to induce dauer arrest in the wild-type state are indicated in green. Putative inhibitory relationships as inferred from epistasis analysis are indicated by red stopped arrows. The red dot-flanked lines correspond to the synthetic enhancement class of genetic interactions mapped in this study.

sis presented here identified numerous additional modifiers. Considering the false negative rates of both HT-Y2H and RNAi studies, it is possible that DAF-7/TGF-β signaling is mediated by an even greater number of components. Finally, we have started a thorough analysis of individual components identified here according to a prioritization scheme that gives the highest priority to components with both Y2H and co-AP evidence for physical interaction and data on genetic interaction with known DAF-7/TGF-β signaling factors. For example, W01G7.1 and C25A1.5 are of high priority given that they both interact with a known component of the pathway (DAF-3/SMAD4) in Y2H and co-AP assays and also have genetic interactions with other known DAF-7/TGF-β pathway component(s). Below we provide in-depth evidence that one of them, W01G7.1, encodes a DAF-7/TGF-β signaling gene product.

Characterization of W01G7.1 and Identification of the Genetic Defect in daf-5 Mutant Animals

Given that there are several uncloned but genetically mapped and characterized loci that modulate daf-7/TGF-β signaling, we asked whether proteins from our interactome network might be encoded by any of these loci. We characterized W01G7.1, a locus that we had identified as a high priority candidate gene for daf-7/TGF-β signaling, and we found that it encodes a novel protein that we termed W01G7.1. We then asked whether W01G7.1 could function as a modulator of DAF-7/TGF-β signaling and whether it could interact with known components of the pathway. To test these hypotheses, we performed a series of Y2H and co-AP assays, and we found that W01G7.1 interacted with both DAF-7 and C25A1.5, a known modulator of DAF-7/TGF-β signaling. These results suggested that W01G7.1 was likely to function as a modulator of DAF-7/TGF-β signaling, and we hypothesized that it might be involved in the regulation of DAF-7/TGF-β signaling, perhaps by modulating the activity of DAF-7 or by interacting with other components of the pathway.

Table 1. Candidate Human Homologs of Modulators of daf-7/TGF-β Pathway Signaling

<table>
<thead>
<tr>
<th>C. elegans ORF Name</th>
<th>Candidate Human Homolog</th>
<th>BLASTP e Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T27E9.1</td>
<td>mitochondrial solute carrier family 25</td>
<td>1.00E-103</td>
</tr>
<tr>
<td>B0336.2/arf-1</td>
<td>ADP-ribosylation factor 1</td>
<td>2.00E-96</td>
</tr>
<tr>
<td>C37C3.6</td>
<td>papilin</td>
<td>1.00E-76</td>
</tr>
<tr>
<td>C25A1.5</td>
<td>fatty acid hydroxylase domain containing 1</td>
<td>7.00E-63</td>
</tr>
<tr>
<td>R05F9.10</td>
<td>hypothetical protein DKFZp586N1020.1</td>
<td>2.00E-40</td>
</tr>
<tr>
<td>F59A2.3</td>
<td>tat-associated protein</td>
<td>2.00E-07</td>
</tr>
<tr>
<td>W01G7.1</td>
<td>SNO</td>
<td>2.80E-01</td>
</tr>
<tr>
<td>AC3.3/abu-1</td>
<td>–</td>
<td>N/A</td>
</tr>
<tr>
<td>W03G1.5</td>
<td>–</td>
<td>N/A</td>
</tr>
</tbody>
</table>

C. elegans ORF names (along with gene names if available) are indicated along with candidate human homologs of the predicted C. elegans proteins as identified by BLASTP analysis.
mation rescue experiments further supported the conclusion that W01G7.1 corresponds to the daf-5 gene (data not shown; Experimental Procedures).

The Tissue Expression Pattern of W01G7.1 is Consistent with a Role in the DAF-7/TGF-β Pathway
To investigate further the potential sites of action of W01G7.1/daf-5 in the whole animal, we determined the tissue expression pattern of this gene by generating C. elegans strains carrying a GFP reporter driven by the W01G7.1/daf-5 promoter. GFP expression was observed consistently in neurons in the head (including many amphid neurons and several unidentified cells located more anteriorly) and in neurons in the tail (Figures 5B–5F). W01G7.1/daf-5 is not expressed in the amphid neuron pair in which daf-7/TGF-β is expressed (Ren et al., 1996; Schackwitz et al., 1996), consistent with its downstream role in the TGF-β signaling pathway. The most frequently observed neuron pair in the tail has been tentatively identified as the left and right LUA interneurons based on the extent and direction of infrequently observed cell processes. Faint expression was occasionally observed in two other neurons in the tail. W01G7.1/daf-5 expression was also observed in the pharynx, most frequently in muscles in the anterior region (procorpus), but occasionally also in the isthmus and terminal bulb. Less frequently, expression in one or two cells located in the midbody was observed. By position, these could be ALML/R (touch-sensitive neurons), but no processes were observed.

Expression of the W01G7.1/daf-5::GFP transgene overlaps partially with that of the gene encoding its two hybrid binding partner, DAF-3/SMAD4 (Patterson et al., 1997), and with that of daf-1/TGF-β-RRI (Gunther et al., 2000) and daf-4/TGF-β-RRI (Patterson et al., 1997). The overlap of W01G7.1/daf-5 and daf-3/SMAD4 expression occurs primarily in neurons in the head and in the pharynx (where W01G7.1/daf-5 expression is stronger). Unlike daf-3/SMAD4, W01G7.1/daf-5 is not expressed in the ventral cord, intestine, hypodermal cells, or gonadal distal tip cells. Cells in which W01G7.1/daf-5 and daf-1/TGF-β-RRI or W01G7.1/daf-5 and daf-4/TGF-β-RRI are expressed are confined to neurons in the head. W01G7.1/daf-5, daf-3/SMAD4, and daf-4/TGF-β-RRI are expressed in the pharynx whereas daf-1/TGF-β-RRI is not. daf-3/SMAD4 and daf-4/TGF-β-RRI are expressed in hypodermal cells; W01G7.1/daf-5 and daf-1/TGF-β-RRI are not. W01G7.1/daf-5 and daf-3/SMAD4 (Patterson et al., 1997), as well as daf-1/TGF-β-RRI (Gunther et al., 2000), are expressed in midstage embryos, all larval stages, and the adult. Taken together, the data suggest that W01G7.1/DAF-5 functions in a complex with DAF-3 in neuronal and pharyngeal tissues to transduce the TGF-β signal regulating dauer formation.

W01G7.1/DAF-5 Has Structural and Functional Similarity to Human Sno/Ski Proteins
A sequence similarity search of putative and known protein sequences in the NCBI databases showed that W01G7.1/DAF-5 has similarity to the human SNO and SKI proteins (Figure 6A). SKI is a protooncoprotein encoded by the cellular counterpart of the avian tumor virus oncogene v-ski (Li et al., 1986; Nomura et al., 1989;
Figure 6. W01G7.1/DAF-5 Is Functionally Homologous to Human SNO/SKI Oncoproteins

(A) Region of amino acid sequence similarity of *C. elegans* W01G7.1/DAF-5 to human SNO and SKI proteins. SNOA and SNON are two isoforms of SNO that arise from alternative splicing of the Sno transcript. Their amino acids are identical within this region. Amino acids in SNO or SKI proteins identical to aligned amino acids in W01G7.1/DAF-5 are shaded in blue.

(B) The domain of W01G7.1/DAF-5 that interacts with DAF-3 maps to the region of amino acid sequence conservation with SNO/SKI. 293T cells were transfected with a GST-DAF-3 or GST alone expression plasmid along with various Myc-tagged W01G7.1/DAF-5 constructs as indicated. Cell lysates were subjected to affinity-purification using glutathione-Sepharose followed by immunoblotting with anti-Myc antibody (top panels). Aliquots of cell lysates were also subjected to immunoblotting to detect expression of Myc- and GST-tagged proteins (middle and lower panels, respectively).

(C) W01G7.1/DAF-5 represses TGF-β-induced transcription of the 3TP-luciferase reporter construct. HepG2 cells were cotransfected with 3TP-lux reporter plasmid together with empty pCMV-Myc-Dest expression vector, increasing amounts of a Myc-W01G7.1/DAF-5 construct, or a Myc-SNON construct as indicated. Cells were stimulated with TGF-β1 (black bars) or left untreated (white bars). Luciferase activity is displayed in relative luciferase units (RLU; see Experimental Procedures).

Stavnezer et al., 1981, 1986). The SNO gene was originally isolated by screening human cDNA libraries with a v-ski cDNA probe and encodes a protein that is highly similar to SKI in amino acid sequence (Nomura et al., 1989). Multiple isoforms (i.e., SNON, SNOA, SNOI) arising from alternative splicing have been described (Nomura et al., 1989; Pearson-White, 1993).

SNO and SKI proteins physically associate with SMAD4 in a protein complex that functions in TGF-β signaling in mammalian cells (Macias-Silva et al., 2002; Stroschein et al., 1999). The sequence similarity of W01G7.1/DAF-5 to SNO/SKI and its physical interaction with DAF-3/SMAD4 supports the hypothesis that the SNO/SKI components of mammalian TGF-β signaling (Luo et al., 1999; Shinagawa et al., 2000; Stroschein et al., 1999) are conserved functionally throughout metazoa.

Strikingly, the region of sequence conservation between W01G7.1/DAF-5 and SKI corresponds to the region of SKI (and SNO) that physically interacts with the SMAD4 protein as demonstrated in a SKI/SMAD4 co-crystal structure (Wu et al., 2002). This indicates that a key structural domain is conserved between W01G7.1/DAF-5 and SNO/SKI (Figure 6A). To test this hypothesis experimentally, we generated expression plasmids encoding two C-terminal truncations of W01G7.1/DAF-5. One of the constructs encodes amino acids 1–310 of W01G7.1/DAF-5, which retains the conserved region, whereas the other encodes amino acids 1–225, in which the conserved domain is absent (Figure 6B). When coexpressed with GST-DAF-3 in 293T cells, both full-length W01G7.1/DAF-5 and W01G7.1/DAF-5(1–310) associated specifically with GST-DAF-3, whereas the W01G7.1/DAF-5(1–225) protein fragment failed to bind. This suggests that the limited region of amino acid similarity between W01G7.1/DAF-5 and SNO/SKI contains a functionally important domain required for physical interaction with the DAF-3/SMAD4 protein.

To further explore functional similarity between W01G7.1/DAF-5 and SNO/SKI, we examined the ability of W01G7.1/DAF-5 to repress TGF-β-mediated transcriptional activation in HepG2 cells. Overexpression of SNON is known to repress TGF-β-mediated transcriptional activation of the p3TP-lux reporter construct (Stroschein et al., 1999; Wrana et al., 1992). We found that expression of increasing amounts of W01G7.1/DAF-5 in HepG2 cells decreased luciferase activity driven by the 3TP promoter upon TGF-β stimulation compared to cells transfected with vector alone (Figure 6C). The magnitude of the repression seen when 4.5 µg of W01G7.1/DAF-5 expression plasmid was transfected was comparable to the degree of repression observed when the same amount of SNON expression plasmid...
was transfected (Figure 6C). These results demonstrate that, like SNON, W01G7.1/DAF-5 can function as a transcriptional repressor of a TGF-β-responsive promoter.

Sno and Smad4 knockout mice share the same phenotype, in that both exhibit enhanced tumor formation (Shinagawa et al., 2000; Takaku et al., 1999). Similarly, in our genetic experiments, W01G7.1/daf-5 and daf-3/SMA44 loss-of-function mutants had the same phenotype, in that both were defective in dauer formation and TGF-β-induced gene expression (Beckmann et al., 1992). Our findings suggest that a physical association between ARF-1 and SMAD4 may underlie this observation.

Another DAF-3/SMA44 interactor, T27E9.1, encodes a protein with strong amino acid sequence similarity to mammalian proteins of the mitochondrial solute carrier family 25 (Figure 1B; Table 1). A member of this family, Slc25a4, is an adenine nucleotide transporter that can induce apoptosis (Bauer et al., 1999). Given the known ability of TGF-β to modulate apoptosis, direct association of SMA44 with mitochondrial adenine nucleotide transporters could be part of the mechanism by which TGF-β regulates cell death.

R05F9.10 encodes a protein that contains three TPR repeats and is linked to DAF-4/TGF-β-RII through an intermediate interactor (Figure 1B; Table 1). TPR domains mediate interactions with the carboxy termini of many proteins, including the chaperone Hsp90 (Blatch and Lassle, 1999; Young et al., 1998). Our finding that the C. elegans Hsp90 homolog DAF-21 also physically interacts with DAF-4/TGF-β-RII (Figure 1B) suggests a receptor-associated protein complex containing DAF-21/Hsp90 and the R05F9.10 protein might regulate DAF-7/TGF-β-like signal transduction.

The DAF-4/TGF-β-RII binding protein AC3.3/ABU-1 is a transmembrane protein whose synthesis is induced in mutant animals that are defective in the unfolded protein response (Urano et al., 2002). ABU-1 localizes to the endoplasmic reticulum (ER) when expressed in mammalian cells (Urano et al., 2002). Taken together with the enhancement of daf-8(e1393) dauer phenotypes by RNAi of AC3.3/ABU-1 (Figures 3A and 3B), this observation suggests a model whereby AC3.3/ABU-1 could potentiate DAF-7/TGF-β signaling by facilitating trafficking of DAF-4/TGF-β-RII from the ER to the plasma membrane. C37C3.6a, which has a synthetic enhancement inter-

action with daf-14(m77) in double perturbation experiments (Figures 3A and 3B), is predicted to encode a protein with thrombospondin and trypsin inhibitor domains. The association of C37C3.6a with the ER resident protein AC3.3/ABU-1 (Figure 1B) suggests that it may also play a role in DAF-4/TGF-β-RII trafficking. Interestingly, human ADAMTS-2, a close mammalian homolog of C37C3.6a, is transcriptionally induced 8-fold by TGF-β (Wang et al., 2003), suggesting the existence of a feed-forward mechanism involving C37C3.6a that could facilitate proper trafficking of DAF-4/TGF-β-RII.

Conclusions

To our knowledge, this is the first report of integrating large-scale protein interaction mapping with systematic multiple genetic perturbations to study a metazoan signaling pathway. This strategy not only identified a component of daf-7/TGF-β signaling that was independently identified by traditional forward genetic analysis (i.e., W01G7.1/daf-5) but also identified eight other daf-7/TGF-β pathway modulators that have eluded identification by more conventional approaches. Given the relative insensitivity of RNAi in reproducing phenotypes of known dauer mutants (as discussed previously; data not shown), this represents a conservative estimate of the number of modulators of DAF-7/TGF-β signaling identified in this study. As most of these modulators appear to be conserved in the human genome, they may open new avenues of investigation for understanding human TGF-β signaling and its dysregulation in disease. Our results indicate that combining interactome maps with systematic multiple perturbation methods can identify biologically relevant components and contribute to a better understanding of the logic of molecular networks. Such an approach may be useful for studying biological processes at the systems scale.

Experimental Procedures

ORF Cloning and Yeast Two-Hybrid Screening

ORFs were gateway cloned as described (Reboul et al., 2001). Proteome-wide Y2H screens were performed as described (Walhout and Vidal, 2001a) using the AD-wrmcDNA library (Walhout et al., 2000b). Typically, 1–3 million transformants were screened for each bait. In the first-generation screens, DAF-8/R-SMAD could not be used, because a D8-DAF-8 fusion behaved as an autoactivator in the system. To minimize experimental false positive interactions, we utilized a version of the two-hybrid system that expresses baits and preys from low copy number plasmids. We also systematically discarded a few AD-cDNA fusions detected with many other baits in other Y2H screens unrelated to the DAF-7/TGF-β pathway and thus considered as spuruous interactors. Finally, we rigorously re-tested all interactions in fresh yeast cells to eliminate false positive interactions arising from spurious autoactivators or any other mutational events.

For use in second-generation screens, full-length predicted open reading frames (ORFs) corresponding to Y2H interactors obtained from the initial screens were amplified from a mixed-stage C. elegans cDNA library and cloned as previously described (Reboul et al., 2001). This procedure successfully cloned ORFs corresponding to 21 of the 28 “first-generation” interactors (Supplemental Table S1, available on Molecular Cell’s website). These were then sub-cloned as DB-X fusions using the Gateway system. Two of the DB-ORF fusions (DB-R05D11.8 and DB-ZK1193.1) behaved as autoactivators and could not be used in screens. The remaining 19 baits were screened against the AD-wrmcDNA library to identify second-
Southern Analysis of Genomic DNA from daf-5 Mutant Animals

A nearly full-length cDNA (yk130g8, approximately 2.7 kb) corresponding to W01G7.1 was obtained from a lambda-ZAP clone provided by Yuji Kohara. The derived pBluescript plasmid insert was partially sequenced from both ends using M13 oligonucleotide primers. Approximately 10 μg of purified DNA from the yk130g8 pBluescript clone was digested overnight with PstI, generating two fragments containing insert DNA (1133 bp and 600 bp). These fragments were gel purified, pooled, extracted, and radiolabeled with 32P dCTP using the random hexamer method. Approximately 10 μg each of purified genomic DNAs from N2, daf-5(m512), and daf-1(m142;津) (the mutator mutant of m512) were digested overnight with XbaI and resulting fragments were resolved by agarose gel electrophoresis along with BetEl-digested lambda marker DNA and transferred to a nitrocellulose membrane. The membrane was incubated with radiolabeled yk130g8 fragments and exposed to X-ray film.

Localizing of W01G7.1/daf-5 Expression Using a GFP Fusion Transgene

A 3855 bp fragment of W01G7.1 genomic DNA containing 2563 bp of 5’ sequence, exon 1, and part of exon 2 was cloned into the GFP expression vector pPD95.75 (without a nuclear localization signal) and coinjected into the germline of N2 with the dominant cosmid W02B8.

HepG2 Cell Transfections and 3TP-Lux Reporter Assays

HepG2 cells were transfected with 0.25 μg of the 3TP-lux luciferase reporter plasmid (Wrama et al., 1992), 50 ng of the β-galactosidase reporter plasmid pCH110 (obtained from Pharmacia-LKB, containing a lacZ gene under the control of the SV40 early region promoter), and varying amounts of the gene expression construct under study. Gene expression vector plasmid without a gene insert was included in the transfection to make the total gene expression construct DNA equal to 4.5 μg. Cells were cultured and transfected in 6 well tissue culture plates in 2 ml Opti-MEM using Lipofectamine Plus (Invitrogen) according to the manufacturer’s instructions. The cells were washed with serum-free medium and incubated with 2.5 ng/ml of purified recombinant human TGF-β1 (R&D Systems Inc., Minneapolis, MN) in serum-free medium 24 hr following the transfections. Luciferase and β-galactosidase activities were measured according to manufacturer’s instructions (Tropix, Bedford, MA) after 16–20 hr of TGF-β1 stimulation. The activity of β-galactosidase was used to correct variation in transfection efficiencies between wells by calculating a relative luciferase activity (luciferase value/β-galactosidase value; expressed as relative luciferase units). The experiments were repeated at least three times with similar findings.
Co-AP Experiments in 293T Cells

We Gateway cloned full-length ORFs corresponding to proteins comprising 51 of the 71 predicted protein interactions in the interaction network (see ORF cloning section above). Entry clones of bait proteins were subcloned into pDEST-27 (Invitrogen), which contained the GST coding sequence upstream of a Gateway recombinase site. Entry clones of prey proteins were subcloned into pCMV-Myc-DEST, which contains a Myc epitope tag upstream of the Gateway recombinase site (Xu et al., 2000). Both vectors express their respective fusion polypeptides from a CMV promoter. Constructs encoding W01G7.1/DAF-5 truncations were generated by PCR, Gateway cloned, and sequence verified. For co-AP experiments, 1.5 μg of each plasmid was transfected into 293T cells using Lipofectamine 2000 reagent according to the manufacturers instructions (Invitrogen). For GST control plasmids, 0.5 μg was used per transfection because we found that higher amounts significantly reduced expression of the cotransfected Myc-tagged ORF. Cells were cultured for 2 days in DMEM medium with 10% fetal bovine serum (Invitrogen) and lysed in 0.5% NP-40 buffer (20 mM Tris-HCl [pH 8.0], 100 mM NaCl, 1 mM EDTA, and complete protease inhibitor cocktail [Amersham]). Lysates were cleared by centrifugation at 14,000 × g before precipitation of protein complexes using glutathione-one-Sepharose beads. Beads were washed three times with lysis buffer, and purified complexes and control lysate samples were separated on NuPAGE acrylamide gels (Invitrogen). Myc- and GST-tagged proteins were detected using standard immunoblotting techniques. Antibodies used were mouse monoclonal anti-Myc (clone 9E10) and rabbit polyclonal anti-GST from Sigma.

Each of the 51 interactions was tested in the co-AP assay. In 32 cases the experiment results were not interpretable either because (a) expression of the Myc-tagged prey protein was undetectable in cell lysates following transfection, (b) the Myc-tagged prey protein was not expressed at comparable levels in the GST-bait transfection as compared to the GST control transfection, (c) expression of the GST-bait protein could not be detected, or (d) the Myc-prey protein bound nonspecifically to GST protein alone. Similar protein expression success rates have been observed by us and others in the context of high-throughput settings (Braun et al., 2002; Reboul et al., 2003). Nevertheless, the assay results were interpretable for 19 protein-protein interaction pairs, as comparable expression levels of Myc-tagged prey protein were obtained between GST-bait and GST transfections, and GST-bait protein expression was detectable.

Acknowledgments

Note Added in Proof

da Graca et al. have recently reported the identification of DAF-5 as a Ski oncoprotein homolog (Development 131, 435–446 [2004]).